About Maximapedia

Modern Human Anatomy

MODERN HUMAN ANATOMY (Anthropotomy)

The history of modern human anatomy in Great Britain begins with the time at which the dissection of the human body became part of the training of students of medicine, and this is one of the greatest debts, though by no means the best recognized, of the many which medical science owes to that remarkable man William Hunter. Before his time the anatomy professors of the most celebrated schools both at home and abroad used one or at most two subjects to illustrate their courses of lectures, and were in the habit of demonstrating the performance of surgical operations not on human bodies but on those of lower animals. Few students dissected the human body, because for such dissection they had no opportunities. The English law, since the time of Henry VIII., allowed only the bodies of persons executed for murder to be dissected, and the supply seems to have been sufficient for the humble needs of the time. The reformation of this antiquated and imperfect system took place in 1747, when Hunter established complete courses of anatomical lectures and opened a school for dissection. The practice of dissection grew so rapidly that by about 1793 there were 200 regular anatomy students in London, while in 1823 their number was computed at about 1000. Of course the supply of murderers was not enough for all these students, and the very fact that only murderers were allowed for this purpose made people bitterly hostile to the bodies of their relations and friends being dissected. In accounting for the great aversion which there has always been from dissection in England, it should be remembered that, although capital punishment was the penalty for very many offences at the beginning of the 19th century, only the bodies of murderers were handed over to the anatomists.

When once the absolute necessity of a surgeon's having a good knowledge of anatomy was realized, bodies had to be procured at any hazard, and the chief method was to dig them up as soon as possible after their burial. This practice of exhumation or "body-snatching" on a large scale seems to have been peculiar to Great Britain and America, and not to have been needed on the continent of Europe. In France, Italy, Portugal and Austria no popular objection was raised to the bodies of friendless people, who died in hospitals, or of those whose burial was paid for by the state, being dissected, provided a proper religious service was held over them. In Germany it was obligatory that the bodies of all people unable to pay for their burials, all dying in prisons, all suicides and public women should be given up. In all these countries the supply was most ample, exhumation was unknown, and the cost of learning anatomy to the students was very moderate. In Great Britain the earlier exhumations seem to have caused very little popular concern; Hunter, it is said, could manage to get the body of any person he wanted, were it that of giant, dwarf, hunchback or lord, but later, when the number of students increased very rapidly, the trade of "resurrection man" became commoner, and attracted the lowest dregs of the vicious classes. It is computed that in 1828 about 200 people were engaged in it in London alone, though only a few gained their entire livelihood by it. In the first half of the 18th century, and for some time afterwards, the few dissections which were undertaken were carried out in the private houses of medical men. In 1702 a rule was passed at St Thomas's Hospital preventing the surgeons or pupils from dissecting bodies there without the express permission of the treasurer, but by 1780 this rule seems to have lapsed, and a definite dissecting-room was established, an example which was soon followed by Guy's and St Bartholomew's.

In the early years of the 19th century the number of students increased so rapidly that a good many private anatomy schools grew up, and in 1828 we find that the total list of London dissecting rooms comprised those of Guy's, London, St Bartholomew's and St Thomas's hospitals, the Webb Street school of Mr Grainger, the Aldersgate school of Mr Tyrrell, the Windmill Street school where Caesar Hawkins and Herbert Mayo lectured, and the schools of Messrs. Bennett, Carpue, Dermott and Sleigh. These schools needed and, it seems, obtained nearly 800 bodies a year in the years about 1823, when there were nearly 1000 students in London, and it is recorded that bodies were even sent to Edinburgh and Oxford.

When it is realized that the greater number of these were exhumed, it is easy to understand how hostile the public feeling became to the body-snatchers or "resurrection men," and also in a modified form to the teachers of anatomy and medical students. This was increased by the fact that it soon became well known that many of the so-called resurrection men only used their calling as a cloak for robbery, because, if they were stopped with a horse and cart by the watch at night, the presence of a body on the top of stolen goods was sufficient to avert suspicion and search. It is in many places suggested, though not definitely stated, that the Home Office authorities understood how absolutely necessary it was that medical students should learn the details of the human body, on which they would be called to operate, and that the police had instructions not to interfere more than was necessary with the only method by which that education could be supplied, however unlawful it might be. So emboldened and careless did these body-snatchers become, and so great was the demand for bodies, that they no longer confined themselves to pauper graves, but took the remains of the wealthier classes, who were in a position to resent it more effectually; often they did not even take the trouble to fill in the graves after rifling their contents, and, in consequence, many sextons, who no doubt had been bribed, lost their posts, and men armed with firearms watched the London burial-places at night. The result of this was that the "resurrection men" had to go farther afield, and their occupation was attended with considerable danger, so that the price of a body gradually rose from L. 2 to about L. 14, which seems the maximum ever paid. In addition to this heavy sum the anatomical teachers had to pay the fines of the exhumers when they were caught, or to support their families when they were imprisoned. By 1828 the annual supply of bodies had dropped to about 450, and about 200 English students were forced each year to go to Paris for their anatomical instruction. There they could get a body for about seven francs and could also be taught by English anatomists who settled in that city for the purpose.

As early as about 1810 an anatomical society was formed, to impress on the government the necessity for an alteration in the law, and among the members we find the names of John Abernethy, Charles Bell, Everard Home, Benjamin Brodie, Astley Cooper and Henry Cline. It was owing to the exertions of this body that in 1828 a select committee was appointed by the government to report on the whole question, and to the minutes of evidence taken before this body the reader is referred for further details.

The report of this committee led to the Anatomy Act of 1832, but there can be little doubt that its passage through the House was expedited by the recent discovery and arrest of the infamous William Burke and William Hare, who, owing to the extreme difficulty of procuring subjects for dissection in Edinburgh and the high price paid for them, had made a practice of enticing men to their lodgings and then drugging and suffocating them in order to sell their bodies to Dr Knox. Hare turned king's evidence but Burke was executed. (See MacGregor's History of Burke and Hare, 1884, Lonsdale's Life and Writings of Robert Knox, 1870. Many further details connected with the condition of anatomy, especially in Dublin, before the passing of the Anatomy Act, will be found in Memoirs of James Macartney by Professor A. Macalister, F.R.S.) The bill to legalize and regulate the supply of subjects for dissection did not pass without considerable opposition. In 1829 the College of Surgeons petitioned against it, and it was withdrawn in the House of Lords owing to the opposition of the archbishop of Canterbury, but in 1832 a new Anatomy Bill was introduced, which, though violently opposed by Messrs Hunt, Sadler and Vyvyan, was supported by Macaulay and O'Connell, and finally passed the House of Lords on the 19th of July 1832.

This is the act which governs the practice of anatomy in the British Isles up to the present day, and which has only been slightly modified as to the time during which bodies may be kept unburied in the schools. It provides that any one intending to practise anatomy must obtain a licence from the home secretary. As a matter of fact only one or two teachers in each institution take out this licence and are known as licensed teachers, but they accept the whole responsibility for the proper treatment of all bodies dissected in the building for which their licence is granted. Watching over these licensed teachers, and receiving constant reports from them, are four inspectors of anatomy, one each for England, Scotland, Ireland and London, who report to the home secretary and know the whereabouts of every body which is being dissected. The main clause of the act is the seventh, which says that a person having lawful possession of a body may permit it to undergo anatomical examination provided no relative objects; the other clauses are subsidiary and detail the methods of carrying this into effect. In clause 16, however, the old act of Henry VIII. is repealed and the bodies of murderers are no longer to be given up for dissection after execution.

There can be little doubt that this act has worked well and with a minimum of friction; it at once did away with body-snatching and crimes like those of Burke and Hare. No licensed teacher now could or would receive a body without a medical certificate and a warrant from the inspector of anatomy, and, when the bodies are buried, a proper religious service, according to the creed professed during life, is provided. The great majority of bodies are those of unclaimed poor in the workhouse infirmaries, but a few are obtained each year from the general hospitals. Occasionally a well-to-do person, following the example of Jeremy Bentham, leaves his body for the advancement of science, but even then, if his relatives object, it is not received.

The ample supply of subjects obtained by legitimate means which the anatomy act provided was followed by the opening of anatomical schools at all the great London hospitals and the universities, with the result that anatomical research was stimulated and text-books embodying the latest discoveries were brought out. It is wonderful, however, how much descriptive anatomy was taught in the days before text-books were common and how much of what is essential to the study of surgery and medicine the students knew. In looking through an old book of anatomical questions and answers dated 1812, one is struck by the fact that any one working through them with the body would probably pass an average modern anatomical examination to-day.

The various phases which anatomy in the British Isles has passed through have also been experienced in America, though it is difficult to compare the two countries owing to the fact that each state in the Union makes its own laws as to dissection, and that these vary considerably. The first anatomy act worthy of the name was that of Massachusetts, and was passed in 1831, one year before the British act. There is reason to believe, however, that, in some states, all the evils of body-snatching existed up to the end of the 19th century. In some more enlightened states, such as Pennsylvania and Massachusetts, the modern acts are in advance of the British in that they are mandatory instead of permissive, and their compulsory nature is found rather to reduce than to increase public opposition to dissection. A study of the history of anatomy in the United States during the 19th century furnishes an instructive lesson on the futility of attempting to suppress dissection by legislation and on the serious and sometimes terrible crimes to which any such attempt naturally leads. It also teaches that, when unclaimed bodies must be given up and must be treated reverently and buried decently, there is less friction than when public boards have the right of arbitrarily refusing to allow their unclaimed dead to be used for the service of the living.

In all the important countries of Europe, with the exception of Russia and Turkey, anatomy acts exist. They almost all differ from the British act in being mandatory instead of permissive; in other words, certain unclaimed bodies must be given up to the schools of anatomy. As a rule these come from the general hospitals, but sometimes, as in Germany, Austria and Sweden, suicides are received and form a considerable part of the whole number. Even where executed criminals are available they nowadays form a negligible contribution, but the unclaimed bodies of people dying in prison are provided for in the French, Belgian, Norwegian, Swedish, German and Italian regulations, and in Paris they form an important element of the supply. In Russia several attempts to gain an anatomy act have been made, but have always been opposed by those in authority, and there is good reason to believe that bodies are procured by bribing hospital and mortuary attendants. It is said that the army contributes a large percentage of the total number. In Turkey no facilities for dissecting the dead body exist, as the practice is against the Mahommedan religion; the German pathologists in Turkey, however, insist on making post mortem examinations. In the British colonies anatomical regulations vary a good deal; sometimes, as in New South Wales, the act is founded on that of Great Britain and is permissive, but in Victoria the minister may authorize the medical officer of any public institution supported wholly or in part by funds from the general revenue to permit unclaimed bodies to be dissected, provided the persons, during life had not expressed a wish against it. This act in its working is equivalent to a mandatory one, since the power of refusing bodies is not left in the hands of, in this respect, uneducated poor law guardians.

In the early years of the 19th century Sir Charles Bell's work on human anatomy is by far the most important in the British Isles. He wrote the article on the nerves in his brother John Bell's work on the anatomy of the human body, as well as his own classical works on the anatomy of expression, the hand and the arteries; but his chief work was the discovery of the difference between motor and sensory nerves. Sir Astley Cooper brought out his beautifully illustrated monograph on hernia in 1807. Besides these, the Edinburgh school had contributed the systematic treatises of Andrew Fyfe, John Bell, the third Monro and John Gordon. In 1828 appeared the first edition of Quain's Anatomy, written by Jones Quain. This monumental work, which is still among the very first of English text-books, has run through ten editions, and is of even greater value to the teacher and researcher than to the medical student, because of its excellent bibliographies and the way in which it has been kept abreast of modern morphological knowledge by its various editors. Hardly any of the original work now remains. In 1858 another famous text-book on systematic anatomy appeared, written by Henry Gray, and this has always been particularly popular with students both in Great Britain and in America; it pays more attention to the surgical applications of anatomy than to the scientific and morphological side, and has reached its sixteenth edition.

The Cyclopedia of Anatomy and Physiology, edited by Dr Robert Todd from 1835 to 1859, which contained articles on both human and comparative anatomy, is now somewhat out of date, but did much for the advancement of the science when it appeared.

In 1893 a text-book written by several authors and edited by Henry Morris appeared. It has run through three editions and is especially popular in America. The latest English systematic work of first-rate importance is the splendid compilation edited by D. J. Cunningham (1902) and written, with one or two exceptions, by pupils of the veteran anatomist Sir William Turner. It is dedicated to him and will long serve as a memento of the work which he has done in training anatomists for the whole of the British empire. Besides these systematic treatises, many dissecting manuals have been published. The earliest were the Dublin Dissector and the London Dissector; others still in use are those of G. V. Ellis, C. Heath, D. J. Cunningham, and J. Cleland and J. Mackay. In 1889 Professor A. Macalister published a book on anatomy, which combined the advantages of a text-book with those of a dissecting guide.

In America the English text-books are largely used in addition to that edited by F. H. Gerrish. There is a special American edition of Gray.

Many systematic works on modern anatomy have come from Germany. J. F. Meckel, J. C. Rosenmuller, C. F. Krause, G. F. Hildebrandt, J. Hyrtl, H. Luschka and A. Meyer have all published works which have made their mark, but by far the most important, and, as some consider, still the best of all anatomical text-books, is that of F. G. J. Henle, professor of anatomy in Gottingen, which was comlpleted in 1873. The beautiful illustrations of frozen specimens of the body brought out by W. Braune added a great deal to the student's opportunities of learning the relations of the various structures, and are largely used all over the world. Rudinger's Anatomy also contains many plates showing various sections, but the most complete text-book in the German language is that by Prof. Karl von Bardeleben of Jena; this is in eight volumes and contains notices of the latest literature on descriptive and morphological anatomy by the most prominent German anatomists. In addition to these W. Spalteholz and C. Toldt have brought out valuable atlases. In France J. Testut's and Poirier's anatomies, both of great excellence and beautifully illustrated, are the ones in common use.

There are two epoch-making dates in the history of modern English anatomy besides that of the passing of the Anatomy Act in 1832. The first of these is 1867, when the first volume of the Journal of Anatomy and Physiology appeared. This afforded a medium for English anatomists to publish their original work, besides containing valuable reviews and notices of books and work published abroad; it has appeared quarterly without a break since that time, and was long under the immediate direction of Sir William Turner.

The second date is 1887, when the Anatomical Society of Great Britain and Ireland was founded through the exertions of Mr C. B. Lockwood. It meets three times a year in London and once, in the summer, at some provincial school. It numbers some one hundred and fifty members, and enables anatomists from the whole British empire to meet one another and discuss subjects of common interest. Its first president was Prof. Murray Humphry of Cambridge, and its official organ is the Journal of Anatomy and Physiology.

No account of modern anatomical work would be complete without drawing attention to the great mass of special periodical literature containing the records of original work which are being published. It is said that some three or four thousand articles on anatomy appear in six hundred journals each year. To mention a few of these, in addition to the British Journal of Anatomy and Physiology there is an American Journal of Anatomy, the French Bulletin et memoires de la societe anatomique, and La journal de l'anatomie et de la physiologie, and the German Internationale Monatschrift fur Anatomie und Physiologie, Anatomischer Anzeiger, Waldeyer's Archiv fur Anatomie und Physiologie, Schwalbe's Zeitschrift fur Morphologie und Anthropologie, Gegenbaur's Morphologisches Jahrbuch, edited by Ruge, and Merkel's Anatomische Hefte.

Unfortunately the outlook of anatomy in Great Britain is not altogether satisfactory. The number of subjects for dissection has since 1895 been steadily diminishing, especially in London. This is due partly to the modern system of insuring lives for small sums and so decreasing the number of unclaimed bodies, and partly to the fact that, owing to the permissive nature of the British Anatomy Act, several boards of guardians will not allow even unclaimed bodies to be used for dissection and for the teaching of operative surgery. It is not popularly understood that a dearth of bodies means not only a check to abstract science, but a serious handicap to medical education, which must react more upon the poor than upon the rich, since the latter can afford to pay for the services of medical men educated abroad, where no difficulties are placed in the way of their learning fully the structure of the body they have to treat in disease. (F. G. P.)

SUPERFICIAL AND ARTISTIC

The objects of the study of superficial anatomy are to show, first, the form and proportions of the human body and, second, the surface landmarks which correspond to deeper structures hidden from view. This study blends imperceptibly with others, such as physical anthropology, physiognomy, phrenology and palmistry, but whereas these deal chiefly with variations, superficial anatomy is concerned with the type.

With regard to the proportions of the body the artist and anatomist approach the subject from a slightly different point of view. The former, by a process of artistic selection, seeks the ideal and adopts the proportions which give the most pleasing effect, while the latter desires to know only the mean of a large series of measurements.

The scheme which Dr Paul Richer suggests( Anatomie artistique, Paris, 1890), and Professor Arthur Thomson approves (Anatomy for Art Students, 1896), is to divide the whole body into head-lengths, of which seven and a half make up the stature. Four of these are above the fork and three and a half below (see figs. 1 and 2). Of the four above, one forms the head and face, the second reaches from the chin to the level of the nipples, the third from the nipples to the navel, and the fourth from there to the fork. By dividing these into half-heads other points can be determined; for instance the middle of the first head-length corresponds to the eyes, the middle of the second to the shoulder, of the fourth to the top of the hip-joint, and of the fifth to the knee-joint.

The elbow-joint, when the arms are by the side, is a little above the lower limit of the third head-length, whilst the wrist is opposite the very centre of the stature, three head-lengths and three-quarters from the crown or the soles. The tips of the fingers reach a little below the middle of the fifth head-length. (In fig. 1 the fingers are bent.) By making the stature eight head-lengths instead of seven and a half the artistic effect is increased, as it is also by slightly lengthening the legs in proportion to the body. Approximate average breadth measurements are two heads for the greatest width of the shoulders, one and a half for the greatest width of the hips, one for the narrowest part of the waist, and three-quarters for the breadth of the head on a level with the eyes.

The relation of superficial landmarks to deep structures cannot be treated here in full detail, but the chief points may be indicated. Certain parts of the head may easily be felt through the skin. If the finger is run along the upper margin of the orbit, the notch for the supraorbital nerve may usually be felt at the junction of the inner and middle thirds. At the outer end of the margin is its junction with the malar bone, and this easily felt point is known as the external angular process. The junction of the frontal and nasal bones at the root of the nose is the nasion, while at the back of the skull the external occipital protuberance or inion is felt and marks the position of the torcular Herophili, where the venous sinuses meet. The zygoma may be felt running back from the malar bone to just in front of the ear, and two fingers' breadth above the middle of it marks the pterion, a very important point in the localization of intracranial structures. It corresponds to the anterior branch of the middle meningeal artery, to the Sylvian point where the three limbs of the fissure of Sylvius diverge, to the middle cerebral artery, the central lobe of the brain or island of Reil, and the anterior part of the corpus striatum. The fissure of Sylvius can be marked out by drawing a line from the external angular process back through the Sylvian point to the lower part of the parietal eminence.

The position of the sulcus of Rolando is important because of the numerous cortical centres which lie close to it. For practical purposes it may be mapped out by taking the superior Rolandic point, 1/2 in. behind the bisection of a line drawn from the nasion to the inion over the vault of the skull, and joining that to the inferior Rolandic point, which is just above the line of the fissure of Sylvius and 1 in. behind the Sylvian point. The external parieto-occipital fissure, which forms the boundary between the parietal and occipital lobes of the brain, is situated practically at the lambda, which is a hand's breadth (2 3/4 in.) above the inion. The lateral sinus can be mapped out by joining the inion to the asterion, a point two-thirds of the distance from the lambda to the tip of the mastoid process; thence the sinus curves downward and forward toward the tip of the mastoid process. A point 1 in. horizontally backward from the top of the external auditory meatus will always strike it.

Cranio-cerebral topography has been dealt with by Broca,
Bischoff, Turner, Fere, Pozzi, Giacomini, Ecker, Hefftler and
Hare. Among the more recent papers are those of R. W.
Reid (Lancet, 27th September 1884), W. Anderson and G.
Makins (Lancet, 13th July 1889), Prof. Chiene (detailed
in Cunningham's Text-Book of Anatomy), V. Horsley (Am.
Journal Med. Sci., 1887), G. Thane and R. Godlee (Quain's
Anatomy-appendix to 10th edition). D. J. Cunningham
discusses the whole question in his "Contribution to the
Surface Anatomy of the Cerebral Hemispheres" (Cunningham
Memoirs, No. vii. R. Irish Academy, Dublin, 1892),
and he has prepared a series of casts to illustrate it.

The Face.-On the front of the face a line drawn down from the supraorbital notch between the bicuspid teeth to the side of the chin will cut the exit of the second division of the fifth nerve from the infraorbital foramen, a quarter of an inch below the infraorbital margin, and also the exit of the third division of the fifth at the mental foramen, midway between the upper and lower margins of the body of the jaw. In practice it will be found that the angle of the mouth at rest usually corresponds to the interval between the bicuspid teeth. The skin of the eyelids is very thin, and is separated from the subjacent fibrous tarsal plates by the orbicularis palpebrarum muscle. On everting the lids the delicate conjunctival membrane is seen, and between this and the tarsal plates lie the meibomian glands, which can be faintly seen as yellowish streaks. From the free edges of the eyelids come the eyelashes, between which many large sweat- glands open, and when one of these is inflamed it causes a "stye." Internally the two eyelids form a little recess called the internal canthus, occupied by a small red eminence, the caruncula lachrymalis, just external to which a small vertical fold of conjunctiva may often be seen, called the plica semilunaris, representing the third eyelid of birds and many mammals. By gently drawing down the lower eyelid the lower punctum may be seen close to the caruncula; it is the pinhole opening into the lower of the two canaliculi which carry away the tears to the lachrymal sac and duct. On the side of the face the facial artery may be felt pulsating about an inch in front of the angle of the jaw; it runs a tortuous course to near the angle of the mouth, the angle of the nose and the inner angle of the eye; in the greater part of its course its vein lies some distance behind it. The parotid gland lies between the ramus of the jaw and the mastoid process; anteriorly it overlaps the masseter to form the socia parotidis, and just below this its duct, the duct of Stensen, runs forward to pierce the buccinator and open into the mouth opposite the second upper molar tooth. The line of this duct may be marked out by joining the lower margin of the tragus to a point midway between the lower limit of the nose and the mouth. The facial or seventh nerve emerges from the skull at the stylomastoid foramen just in front of the root of the mastoid process; in the parotid gland it forms a network called the pes anserinus, after which it divides into six branches which radiate over the face to supply the muscles of expression.

The Neck.-In the middle line below the chin can be felt the body of the hyoid bone, just below which is the prominence of the thyroid cartilage called "Adam's apple," better marked in men than in women. Still lower the cricoid cartilage is easily felt, while between this and the suprasternal notch the trachea and isthmus of the thyroid gland may be made out. At the side the outline of the sterno-mastoid muscle is the most striking mark; it divides the anterior triangle of the neck from the posterior. The upper part of the former contains the submaxillary gland, which lies just below the posterior half of the body of the jaw. The line of the common and the external carotid arteries may be marked by joining the sterno-clavicular articulation to the angle of the jaw. The eleventh or spinal accessory nerve corresponds to a line drawn from a point midway between the angle of the jaw and the mastoid process to the middle of the posterior border of the sterno-mastoid muscle and thence across the posterior triangle to the deep surface of the trapezius. The external jugular vein can usually be seen through the skin; it runs in a line drawn from the angle of the jaw to the middle of the clavicle, and close to it are some small lymphatic glands. The anterior jugular vein is smaller, and runs down about half an inch from the middle line of the neck. The clavicle or collar-bone forms the lower limit of the neck, and laterally the outward slope of the neck to the shoulder is caused by the trapezius muscle.

The Chest.-It is important to realize that the shape of the chest does not correspond to that of the bony thorax which encloses the heart and lungs; all the breadth of the shoulders is due to the shoulder girdle, and contains the axilla and the head of the humerus. In the middle line the suprasternal notch is seen above, while about three fingers' breadth below it a transverse ridge can be felt, which is known as Ludovic's angle and marks the junction between the manubrium and gladiolus of the sternum. Level with this line the second ribs join the sternum, and when these are found the lower ribs may be easily counted in a moderately thin subject. At the lower part of the sternum, where the seventh or last true ribs join it, the ensiform cartilage begins, and over this there is often a depression popularly known as the pit of the stomach. The nipple in the male is situated in front of the fourth rib or a little below; vertically it lies a little external to a line drawn down from the middle of the clavicle; in the female it is not so constant. A little below it the lower limit of the great pectoral muscle is seen running upward and outward to the axilla; in the female this is obscured by the breast, which extends from the second to the sixth rib vertically and from the edge of the sternum to the mid-axillary line laterally. The female nipple is surrounded for half an inch by a more or less pigmented disc, the areola. The apex of a normal heart is in the fifth left intercostal space, three and a half inches from the mid-line.

The Abdomen.-In the mid-line a slight furrow extends from the ensiform cartilage above to the symphysis pubis below; this marks the linea alba in the abdominal wall, and about its middle point is the umbilicus or navel. On each side of it the broad recti muscles can be seen in muscular people. The outline of these muscles is interrupted by three or more transverse depressions indicating the lineae transversae in the recti; there is usually one about the ensiform cartilage, one at the umbilicus, and one between; sometimes a fourth is present below the umbilicus. The upper lateral limit of the abdomen is the subcostal margin formed by the cartilages of the false ribs (8, 9, 10) joining one another; the lower lateral limit is the anterior part of the crest of the ilium and Poupart's ligament running from the anterior superior spine of the ilium to the spine of the pubis (see fig. 1, d); these lower limits are marked by definite grooves. Just above the pubic spine is the external abdominal ring, an opening in the muscular wall of the abdomen for the spermatic cord to emerge in the male. The most modern method of marking out the abdominal contents is to draw three horizontal and two vertical lines; the highest of the former is the transpyloric line of C. Addison (fig. 1, T.P. ), which is situated half-way between the suprasternal notch and the top of the symphysis pubis; it often cuts the pyloric opening of the stomach an inch to the right of the mid-line. The hilum of each kidney is a little below it, while its left end approximately touches the lower limit of the spleen. It corresponds to the first lumbar vertebra behind. The second line is the subcostal (fig. 1, S.C.), drawn from the lowest point of the subcostal arch (tenth rib); it corresponds to the upper part of the third lumbar vertebra, and is an inch or so above the umbilicus; it indicates roughly the transverse colon, the lower ends of the kidneys, and the upper limit of the transverse (3rd) part of the duodenum. The third line is called the intertubercular (fig. 1, I.T.), and runs across between the two rough tubercles, which can be felt on the outer lip of the crest of the ilium about two and a half inches from the anterior superior spine. This line corresponds to the body of the fifth lumbar vertebra, and passes through or just above the ileo-caecal valve where the small intestine joins the large. The two vertical or mid-Poupart lines are drawn from the point midway between the anterior superior spine and the pubic symphysis on each side vertically upward to the costal margin. The right one is the most valuable, as the ileo-caecal valve is situated where it cuts the intertubercular line, while the orifice of the vermiform appendix is an inch lower down. At its upper part it meets the transpyloric line at the lower margin of the ribs, usually the ninth, and here the gallbladder is situated. The left mid-Poupart line corresponds in its upper three-quarters to the inner edge of the descending colon. The right subcostal margin corresponds to the lower limit of the liver, while the right nipple is about half an inch above the upper limit of this viscus.

The Back.-There is a well-marked furrow stretching all the way down the middle line of the back from the external occipital protuberance to the cleft of the buttocks. In this the spinous processes of the vertebrae can be felt, especially if the model bend forward. The cervical spines are difficult to feel, except the seventh and sometimes the second, and although the former is called the vertebra prominens, its spine is less easily felt than is that of the first thoracic. In practice it is not very easy to identify any one spine with certainty: one method is to start from the prominent first thoracic and to count down; another is to join the lower angles of the two scapulae (fig. 2, g) when the arms are hanging down, and to take the spine through which the line passes as the seventh.

The spinal furrow is caused by the prominence of the erector spinae muscles on each side; these become less well marked as they run upward. The outlines of the scapulae can be well seen; they cover the ribs from the second to the seventh inclusive. The scapular spine is quite subcutaneous, and can be followed upward and outward from the level of the third thoracic spine to the acromion, and so to the outer end of the clavicle. On the lower margin of the acromion is a little tubercle known as the metacromial process or acromial angle, which is very useful for taking measurements from. The tip of the twelfth rib may usually be felt about two inches above the middle of the iliac crest, but this rib is very variable in length. The highest point of the iliac crest corresponds to the fourth lumbar spine, while the posterior superior iliac spine is on a level with the second sacral vertebra. This posterior superior spine is not easily felt, owing to the ligaments attached to it, but there is usually a little dimple in the skin over it (fig. 2, b) . By drawing horizontal lines through the 1st, 3rd and 5th lumbar spines, the transpyloric, subcostal and intertubercular lines or planes may be reproduced behind and the same viscera localized.

The Arm.-Running downward and outward from the inner half of the clavicle, where that bone is convex forward, is the clavicular part of the pectoralis major, while from the outer third of the bone, where it is concave forward, is the clavicular part of the deltoid; between these two muscles is an elongated triangular gap with its base at the clavicle, and here the skin is somewhat depressed, while the cephalic vein sinks between the two muscles to join the axillary vein. The tip of the coracoid process is situated just under cover of the inner edge of the deltoid, one inch below the junction between the outer and middle thirds of the clavicle. The deltoid muscle (fig. 1, b) forms the prominence of the shoulder, and its convex outline is due to the presence of the head of the humerus deep to it; when this is dislocated the shoulder becomes flattened. The pectoralis major forms the anterior fold of the axilla or armpit, the posterior being formed by the latissimus dorsi and teres major muscles. The skin of the . floor of this space is covered with hair in the adult, and contains many large sweat glands. The axillary vessels and brachial plexus of nerves lie in the outer wall, while on the inner wall are the serrations of the serratus magnus muscle, the outlines of some of which are seen on the side of the thorax, through the skin, when the arm is raised (fig. 1, a) . Below the edge of the pectoralis major, the swelling of the biceps (fig. 1, g) begins to be visible, and this can easily be traced into its tendon of insertion, which reaches below the level of the elbow joint. On each side of the biceps is the external and internal bicipital furrow, in the latter of which the brachial artery may be felt and compressed. The median nerve is here in close relation to the artery. At the bend of the elbow the two condyles of the humerus may be felt; the inner one projects beneath the skin, but the outer one is obscured by the rounded outline of the brachio-radialis muscle. The superficial veins at the bend of the elbow are very conspicuous; they vary a good deal, but the typical arrangement is an M, of which the radial and ulnar veins form the uprights, while the outer oblique bar is the median cephalic and the inner oblique the median basilic vein. At the divergence of these two the median vein comes up from the front of the forearm, while the two vertical limbs are continued up the arm as the cephalic and basilic, the former on the outer side, the latter on the inner. On the back of the arm the three heads of the triceps are distinguishable, the external forming a marked oblique swelling when the forearm is forcibly extended and internally rotated (fig. 2, d.) In the upper part of the front of the forearm the antecubital fossa or triangle is seen; its outer boundary is the brachio-radialis, its inner the pronator radii teres, and where these two join below is the apex. In this space are three vertical structures-externally the tendon of the biceps, just internal to this the brachial artery, and still more internally the median nerve. Coming from the inner side of the biceps tendon the semi-lunar fascia may be felt; it passes deep to the median basilic vein and superficial to the brachial artery, and in former days was a valuable protection to the artery when unskilful operators were bleeding from the median basilic vein. About the middle of the forearm the fleshy parts of the superficial flexor muscles cease, and only the tendons remain, so that the limb narrows rapidly. In front of the wrist there is a superficial plexus of veins, while deep to this two tendons can usually be made to start up if the wrist be forcibly flexed; the outer of these is the flexor carpi radialis, which is the physician's guide to the radial artery where the pulse is felt. If the finger is slipped to the outer side of this tendon, the artery, which here is very superficial, can be felt beating. The inner of the two tendons is the palmaris longus, though it is not always present. On cutting down between these two the median nerve is reached.

The wrist joint may be marked out by feeling the styloid process of the radius on the outer side, and the styloid process of the ulna on the inner side behind, and joining these two by a line convex upward. The superficial appearance of the palm of the hand is described in the article on PALMISTRY; with regard to anatomical landmarks the superficial palmar arterial arch is situated in the line of the abducted thumb, while the deep arch is an inch nearer the wrist. The digital nerves correspond to lines drawn from the clefts of the fingers toward the wrist. On the back of the forearm the olecranon process of the ulna is quite subcutaneous, and during extension of the elbow is in a line with the two condyles, while between it and the inner condyle lies the ulnar nerve, here known popularly as the "funny bone." From the olecranon process the finger may be run down the posterior border of the ulna, which is subcutaneous as far as the styloid process at the lower end. On the dorsum of the hand is a plexus of veins, deep to which the extensor tendons are seen on extending the fingers. When the thumb is extended, two tendons stand out very prominently, and enclose a triangular space between them which is sometimes known as the "anatomical snuff box"; the outer of these is the tendon of the extensor brevis, the inner of the extensor longus pollicis. Situated deeply in the space is the radial artery, covered by the radial vein. On the dorsum of the hand there is a plexus of veins, and deep to these the tendons of the extensor longus digitorum stand out when the wrist and fingers are extended.

The Leg.-Just below Poupart's ligament (fig. 1, d), a triangular depression with its apex downward may be seen in muscular subjects; it corresponds to Scarpa's triangle, and its inner border is the tendon of the adductor longus, which is easily felt if the model forcibly adducts the thigh. In this triangle the superficial inguinal glands may be made out. The head of the femur lies just below the centre of Poupart's ligament. The sartorius muscle forms the outer boundary of the triangle, and may be traced from the anterior superior spine obliquely downward and inward, across the front of the thigh, to the inner side of the knee. The two vasti muscles are well marked, the internal being the lower and forming with the sartorius the rounded bulging above the inner side of the knee. The internal saphenous vein runs superficially up the inner side of the thigh from behind the internal condyle to the femur to the saphenous opening in the deep fascia, the top of which is an inch horizontally outward from the spine of the pubis. On the other side of the thigh a groove runs down which corresponds to the ilio-tibial hand, a thickening of the fascia lata or deep fascia; the lower end of this leads to the head of the fibula. On the front of the thigh, below the sartorius, the rectus muscle makes a prominence which leads down to the patella, the outlines of which bone are very evident (fig. 1, e.) The only part of the femur besides the great trochanter which is superficial is the lower end, and this forms the two condyles for articulation with the tibia. If the posterior part of the inner condyle be joined to the mid-point between the anterior superior spine and the symphysis pubis, when the thigh is externally rotated, the line will correspond in its upper two-thirds to that of the common and superficial femoral arteries, the former occupying the upper inch and a half. The common femoral vein lies just internal to its artery, while the anterior crural nerve is a quarter of an inch external to the latter. The rounded mass of the buttock is formed by the gluteus maximus muscle covered by fat; the lower horizontal boundary is called the fold of the nates, and does not correspond exactly to the lower edge of the muscle. At the side of the buttock is a depression (fig. 2, e) where the great trochanter of the femur can be felt; a line, named after Nelaton, drawn from the anterior superior spine to the tuberosity of the ischium, passes through the top of this. On the back of the thigh the hamstrings form a distinct swelling; below the middle these separate to enclose the diamond-shaped popliteal space (fig. 2, z), the outer hamstrings or biceps being specially evident, while, on the inner side, the tendons of the semi-tendinosus and semi-membranosus can be distinguished. The external popliteal nerve may be felt just behind the biceps tendon above the head of the fibula.

On the front of the leg, below the knee, the ligamentum patellae is evident, leading down from the patella (fig. 1, e) to the tubercle of the tibia. From this point downward the anterior border of the tibia or shin is subcutaneous, as is also the internal surface of the tibia. Internal to the skin is the fleshy mass made by the tibialis anticus and extensor longus digitorum muscles. At the inner side of the ankle the internal malleolus is subcutaneous, while on the outer side the tip of the external malleolus is rather lower and farther back. Both this malleolus and the lower quarter of the shaft of the fibula are subcutaneous, and this area, if traced upward, is continuous with a furrow on the outer side of the leg which separates the anterior tibial from the peroneal groups of muscles, and eventually leads to the subcutaneous head of the fibula. At the back of the leg the two heads of the gastrocnemius form the calf, the inner one (fig. 2, e) being larger than the outer. Between the two, in the mid-line of the calf, the external saphenous vein and nerve lie, while lower down they pass behind the external malleolus to the outer side of the foot. The internal saphenous vein and nerve lie just behind the internal border of the tibia, and below pass in front of the internal malleolus. At the level of the ankle-joint the tibialis posticus and flexor longus digitorum tendons lie just behind the internal malleolus, while the peroneus longus and brevis are behind the external. Running down to the heel is the tendo Achillis with the plantaris on its inner side. On the dorsum of the foot the musculo-cutaneous nerve may be seen through the skin in thin people when the toes are depressed; it runs from the anterior peroneal furrow, already described, to all the toes, except the cleft between the two inner ones. There is also a venous arch to be seen, the two extremities of which pass respectively into the external and internal saphenous veins. The long axis of the great toe, even in races unaccustomed to boots, runs forward and outward, away from the mid-line between the two feet, so that perfectly straight inner sides to boots are not really anatomical. The second toe in classical statues is often longer than the first, but this is seldom seen in Englishmen. On the outer side of the sole the skin is often in contact with the ground all along, but on the inner side the arch is more marked, and, except in flat-footed people, there is an area in which the sole does not touch the ground at all.

For further details of surface anatomy see Anatomy for Art
Students, by A. Thomson (Oxford, 1896); Harold Stiles's
article in Cunningham's Text-Book of Anatomy (Young J.
Pentland, 1902); G. Thane and R. Godlee's Appendix to
Quain's Anatomy (Longmans, Green & Co., 1896); Surface
Anatomy, by B. Windle and Manners Smith (H. K. Lewis, 1896);
Landmarks and Surface Markings of the Human Body, by
L. B. Rawling (H. K. Lewis, 1906); Surface Anatomy, by
T. G. Moorhead (Bailliere, Tindall & Cox, 1903). No one
interesred in the subject should omit to read an article
on "Art in its relation to Anatomy," by W. Anderson,
British Medical Journal, 10th August 1895. (F. G. P.)

1 The article in the 9th edition of this Encyclopaedia, dealing with the history of anatomy, and written by the late Dr Craigie of Edinburgh, has gained such a just reputation as the classical work on the subject in the English language that it is substantially reproduced. Here and there points of special or biographical interest are drawn attention to in the shape of footnotes, but any reader interested in the subject would do well to consult, with this article, the work of R. R. von Toply, Studien zur Geschichte der Anatomie im Mittelalter (Leipzig, 1898). In addition to this Professor A. Macalister has published a series of articles, under the head of "Archaeologia Anatomica," in the Journal of Anatomy and Physiology. These are written from a structural rather than a biblioraphical point of view, and will be found under the following headings: "Atlas and Epistropheus," J. Anat. vol. xxxiii. p. 204; "Veins of Forearm," vol. xxxiii. p. 343; "Poupart's Ligament," vol. xxxiii. p. 493; "Tendo-Achillis," vol. xxxiii. p. 676; "Parotid," vol. xxxv. p. 117; "Trochanter," vol. xxxv. p. 269.

2The oldest anatomical treatise extant is an Egyptian papyrus probably written sixteen centuries before our era. It shows that the heart, vessels, liver, spleen, kidneys, ureters and bladder were recognized, and that the blood-vessels were known to come from the heart. Other vessels are described, some carrying air, some mucus, while two to the right ear are said to carry the breath of life, and two to the left ear the breath of death. See A. Macalister, "Archaeologia Anatomica," J. Anat. and Phys. vol. xxxii. p. 775. But see also the article OMEN.

3 An interesting article on the character and work of the Maidstone surgeon, John Halle, by E. Barclay Smith, will be found in the J. Anat. and Phys. vol. xxxiv. p. 275.

4 It has been pointed out by Dr J. F. Payne that Vicary's work is merely an abridged copy of an unpublished English anatomical treatise of the 14th century. The name of the author is unknown, but internal evidence shows that he was a London surgeon. The manuscript was written in English in 1392. See British Medical Journal, January 25, 1896.

5 The passage of Servetus is so interesting that our readers may feel some curiosity in perusing it in the language of the author; and it is not unimportant to remark that Servetus appears to have been led to think of the course of the blood by the desire of explaining the manner in which the animal spirits were supposed to be generated:- "Vitalis spiritus in sinistro cordis ventriculo suam originem habet, juvantibus maxime pulmonibus ad ipsius perfectionem. Est spiritus tenuis, caloris vi elaboratus, flavo colore, ignea potentia, ut sit quasi ex puriore sanguine lucens, vapor substantiam continens aquae, aeris, et ignis. Generatur ex facta in pulmone commixtione inspirati aeris cum elaborato subtili sanguine, quem dexter ventriculus sinistro communicat. Fit autem communicatio haec, non per parietem cordis medium, ut vulgo creditur, sed magno artificio a dextro cordis ventrioulo, longo per pulmones ductu agitatur sanguis subtilis; a pulmonibus praeparatur, flavus efficitur, et a vena arteriosa in arteriam venosam transfunditur. Deinde in ipsa arteria venosa, inspirato aeri miscetur et exspiratione a fuligine expurgatur; aique ita tandem a sinistro cordis ventriculo totum mixtum per diastolen attrahitur, apta supellex, ut fiat spiritus vitalis. Quod ita per pulmones fiat communicatio et praeparatio, docet conjunctio varia, et communicatio venae arteriosae cum arteria venosa in pulmonibus. Confirmat hoc magnitudo insignis venae arteriosae, quae nec talis nec tanta esset facta, nec tantam a corde ipso vim purissimi sanguinis in pulmones emitteret, ob solum eorum nutrimentum; nec cor pulmonibus hac ratione serviret, cum praesertim antea in embryone solerent pulmones ipsi aliunde nutriri, ob membranulas illas seu valvulas cordis, usque ad horum nativitatem; ut docet Galenus, etc. Itaque ille spiritus a sinistro cordis ventriculo arterias totius corporis deinde transfunditur, ita ut qui tenuior est, superiora petit, ubi magis elaboratur, praecipue in plexu retiformi, sub basi cerebri sito, ubi ex vitali fieri incipit animalis, ad propriam rationalis animae rationem accedens."- De Trinitate, lib. v.

6 Highmore was a physician practising at Sherborne all his life (1613-1685).

7 Glisson was for forty years professor of physic at Cambridge.

8 Wharton was a graduate both of Oxford and Cambridge, and physician to St Thomas's Hospital.

9 Willis was Sedleian professor of natural philosophy in Oxford in 1660. Later he practised in London.

10 Tyson was a graduate both of Oxford and Cambridge. He was reader of anatomy at Surgeons' Hall, London.

11 Collins was an M. D. of Padua, Oxford and Cambridge. He was physician in ordinary to Charles II.

12 Havers was a London physician, and died in 1702.

13 Robert Nesbitt (d. 1761) studied at Leiden and practised as a physician in London.

14 Humphrey Ridley (1653-1708) was a London physician who studied at Leiden.

15 Bidloo was a Dutch anatomist and Cowper a London surgeon.

16 Hewson was a partner with William Hunter in the Windmill Street School of Anatomy.

17 Cruikshank followed W. Hunter as lecturer at the Windmill Street school.

18 Scarpa was professor of anatomy at Modena and Pavia.

Note - this article incorporates content from Encyclopaedia Britannica, Eleventh Edition, (1910-1911)

Privacy Policy | Cookie Policy | GDPR